
International Journal of Theoretical Physics, Vol. 36, No. 8, 1997 

Infinite-Energy Dyon-Like Solutions for 
Yang-Mills-Higgs Theory 

D. Singleton 1 

Received March 31, 1997 

Two dyon-like solutions to the SU(2) Yang-Mills-Higgs system are presented. 
These solutions are obtained from the BPS dyon solution by allowing the gauge 
fields to be complex, or by letting the free parameter of the new solution be 
imaginary. In both cases the measurable quantities connected with these new 
solutions are real. Although the new solutions are mathematically simple 
variations of the BPS solution, they have distinct characteristics. 

1. T H E  D Y O N  S O L U T I O N S  

In this paper two new infinite-energy dyon-like solutions to the SU(2) 
Yang-Mil l s -Higgs  equations are given. Although these solutions are simple 
mathematical variations o f  the well-known BPS solution (Prasad and Som- 
merfield, 1975; Bogomolnyi ,  1976), they have different physical characteris- 
tics, and to our knowledge they have not appeared in the literature before. 

The system studied in this paper is an SU(2) gauge theory coupled to 
a scalar field in the triplet representation. The scalar field is taken to have 
no mass or self-interaction. The Lagrangian for this system is 

= --l-'l~ra4 ~ I xv~a~rla'v "~ ~(D~ dpa)(D~dpa) (1) 

where G ~  is the field strength tensor of  the SU(2) gauge fields W~ and D r 
is the covariant derivative o f  the scalar field. The equations of  motion for 
this system are simplified through the use o f  a generalized Wu-Yang  ansatz 
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(Yang and Wu, 1968), which was used by Witten (1977) to study multiin- 
stanton solutions 

r j {r ira  ) G(r) 
W~ = ca0 ~-~ [1 - K(r)] + ~ r2 - 8ia gr 

r a 
W~ = - -  J(r) 

g r  2 

dpa ra 
= - -  H(r) (2) gr 2 

K(r), G(r), J(r), and H(r) are the ansatz functions to be determined by the 
equations of motion. In terms of this ansatz the field equations of the Lagran- 
gian in equation (1) reduce to the following set of coupled nonlinear equations. 

r Z K  ,, = K ( K  2 + G 2 + H 2 _ j 2  _ 1) 

r2G ,, = G(K 2 + G 2 + H 2 _ j2  _ 1) 

rZj ', = 2J(K 2 + G 2) 

r Z H  " = 2H(K 2 + G 2) (3) 

where the primes denote differentiation with respect to r. The solution to 
these equations, discovered by Prasad and Sommerfield (1975) and indepen- 
dently by Bogomolnyi (1976), is 

K(r) = cos(0)Cr csch(Cr), G(r) = sin(0)Cr csch(Cr) 
(4) 

J(r) = sinh(y)[1 - Cr coth(Cr)], H(r) = cosh(~/)[l - Cr coth(Cr)] 

where C, 0, and y are arbitrary constants. One of the nice properties of  this 
solution is that it has finite field energy. In terms of the ansatz functions the 
energy density of the fields is 

To o = L ( K ,  2 + G, 2 + (K 2 + G 2 -  1) 2 + j2(K2 + G 2) + (rJ'  - j )2 
g~\ 2r 2 r 2 2r 2 

+ H2(K 2r 2+ G 2) + (rH'_2_~- H)2) (5) 

For the solution in equation (4) this gives a nonsingular energy density, which 
when integrated over all space yields a finite field energy of E = 4"uC 
cosh2('y)/g 2. This finite-energy property of the BPS solution is one of the 
main reasons for the interest in this classical solution. 
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To investigate the electromagnetic properties of such solutions 't Hooft 
(1974) defined a generalized gauge-invariant electromagnetic field strength 
tensor 

g 
(6) 

where Sa ~_ (~a(fl)bf~)b)- 1/2. This generalized U(1) field strength tensor reduces 
to the usual expression for the field strength tensor if one performs a gauge 
transformation to the Abelian gauge where the scalar field only points in one 
direction in isospin space (i.e., +~ = ~3av) (Arafune et al., 1975). Thus the 
electric and magnetic fields of the BPS solution become 

ri 
Ei = Fi~ - g r  d r  g r  3 

- -  [C2r2csch2(Cr) - 1] 

I s 
Bi  = -2 EijkFj k - -  g~-- 3r (7) 

The magnetic field is that of a point monopole of strength -4~r/g; the electric 
field is that of an extended charge configuration of charge Q = - 4 ~  sinh(~/)/ 
g. The electric charge density is 

1 O 
p(r) = V -  E = ~ ~rr ( r2Er)  

= 2C2 sinh(~/)csch2(Cr) [1 - Cr coth(Cr)] (8) 
gr 

Since the BPS solution has finite field energy, this has led to its interpretation 
as a magnetically and electrically charged particle, with the field energy 
interpreted as the mass of the particle. The ansatz functions K(r), G(r), J(r), 
and H(r) (and therefore the gauge and scalar fields) are real. If complex 
gauge fields and/or infinite-energy configurations are allowed, several more 
solutions can be found for equation (3). First, by looking at the complementary 
hyperbolic functions, one finds the following complex solution: 

K(r) = i cos(0)Cr sech(Cr), G(r) = i sin(0)Cr sech(Cr) 

J(r) = sinh(~/)[1 - Cr tanh(Cr)], H(r) = cosh(~/)[1 - Cr tanh(Cr)] 
(9) 

Since the ansatz functions K(r) and G(r) are imaginary, the space components 
of the gauge fields will be complex. Despite this, all the above-listed physical 
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quantities associated with this complex solution are real. Inserting the ansatz 
functions (9) into equation (5), we find that the field energy density is 

TO O _ 2 cosh2(~/) {_C2 sech2(Cr)[ 1 _ Cr tanh(Cr)] 2 + [C2r2 sech2(Cr) + 112} 
g2 . 2r 2 

(10) 

This energy density is real, but the total field energy is infinite due to the 
singularity at r = 0. Thus the above solution is more like a Wu-Yang 
monopole (Yang and Wu, 1968) or a charged point particle, as opposed to 
a finite-energy BPS dyon. Using equation (7), we find that the electric and 
magnetic fields associated with this solution are 

- sinh(~/)ri 
E i - gr3 [C2r 2 sech2(Cr) + 1] 

r i  
Bi = (11) gr 3 

The complex solution has the same magnetic charge (-4~r/g) and the same 
electric charge [ -4at  sinh(~/)/g] as the BPS solution. By using equation (8), 
we find that the electric charge density for the complex solution is given by 

p(r) = - 2C2 sinh(~/) sech2(Cr) [ 1 - Cr tanh(Cr)] (12) 
gr 

This charge density is real, has a singularity at the origin, and falls off 
exponentially for large r. Even though the space components of the gauge 
fields are complex, all the physical quantities calculated from it are real. The 
main difference between this solution and the BPS solution is the infinite 
field energy of the complex solution. 

To obtain the next solution we apply the transformation C --~ iC to the 
complex solution of (9). This changes the hyperbolic functions into their 
trigonometric counterparts, and yields the following solution to (3): 

K(r) = -cos(0)Cr  sec(Cr), G(r) = -s in(0)Cr sec(Cr) 

J(r) = sinh(~/)[1 + Cr tan(Cr)], H(r) = cosh(~/)[1 + Cr tan(Cr)] (13) 

This solution is completely real, unlike the complex hyperbolic solution (9). 
Even though this solution was obtained from the complex hyperbolic solution 
via a trivial transformation, it has very different features. Most obviously, 
the ansatz functions, and therefore the gauge and scalar fields, become singular 
when Cr = nlr/2, where n = 1, 3, 5, 7 . . . . .  and at r = 0. Thus this solution 
exhibits a series of concentric spherical surfaces on which its fields become 
singular as well as a point singularity at the origin. These singularities also 
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show up in the energy density of this solution. Inserting the ansatz functions 
(13) in (5), we find that the energy density of this solution is 

TO O _ 2 cosh2(~/) [ g2 LC2sec2(Cr)[1 + Cr tan(Cr)] 2 

[ C2r2sec2( Cr) - 1] 2] + 
2r 2 (14) 

- I  

The energy density becomes singular on the same spherical surfaces as the 
gauge and scalar fields. These spherical shells, on which the energy density 
becomes infinite, cause the total field energy of this solution to diverge. The 
electric and magnetic fields of this solution are obtained using (7), 

-sinh(~/)ri [1 - C2r2sec2(Cr)] 
Ei - gr3 

ri (15) 
Bi -- gr3 

The magnetic field is the same as that of the BPS solution or the solution 
of (9). However, the electric field does not fall off for large r, but exhibits 
a somewhat periodic behavior due to the sec2(Cr) term. Additionally, it 
becomes singular on the spherical shells given by Cr = n~r/2 (with n = odd) 
and at r = 0. One could take this as an indication that the electric charge of 
this solution is located on these singular surfaces. Finally, the electric charge 
of this solution is infinite, as indicated by the electric field or by directly 
looking at the charge density 

p(r) = 2C2sinh(~)secZ(Cr) [1 + Cr tan(Cr)] (16) 
gr 

Integrating this over all space yields an infinite electric charge. For the special 
case where ~/ = 0, one finds that the solution carries no electric charge, but 
only a magnetic charge. Even in this case the energy density becomes singular 
on the concentric spherical surfaces and at the origin. Both the BPS solution 
and the solution (9) have finite magnetic and electric charges. The solution 
(13), while having the same magnetic charge as the other two solutions, has 
an infinite electric charge in the general case when ~/ ~s 0. Although this 
solution is a dyon in the sense that it carries both magnetic and electric 
charge, it is probably not correct to view it as a particle-like solution. At this 
point it is unclear how one should view this solution. The point singularity 
at r = 0 and the spherical singular surfaces of this solution are similar to 
that of the Schwarzschild-like solutions presented in Singleton (1995, 1996). 
However, the solutions in Singleton (1995, 1996) only possessed one point 
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singularity at the origin and/or one spherical surface singularity on which 
the fields and energy density diverged. One conjectured use for the singular 
Schwarzschild-like solutions was as a possible explanation of the confinement 
mechanism. When the Schwarzschild-like solution of Singleton (1995) is 
treated as a background field in which a test particle is placed, it is found 
that the spherical singularity acts as an impenetrable barrier which traps the 
test particle either in the interior or the exterior of the sphere (Singleton and 
Yoshida, 1995), giving a classical type of confinement. Similar results have 
been found for other singular solutions (Swank et al., 1975; Lunev, 1993). 
In addition, Swank et al., (1975) point out that such a classical type of 
confinement is only possible with infinite-energy solutions. Treating the 
present solution as a background field would also trap test particles between 
any two of the concentric spherical singularities. This trigonometric solution 
could possibly be used to solve the field equations in some limited range of 
r, and then it could be patched to one of  the other solutions, which would 
solve the field equations for the remaining range of r. This is similar to what 
is sometimes done in general relativity, where one tries to patch an exterior 
solution for some matter distribution with some interior solution. 

Finally, one can obtain a third solution to (3) by applying the transforma- 
tion C ~ iC to the BPS solution (4). This yields 

K(r) = cos(0)Cr csc(Cr), G(r) = sin(0)Cr csc(Cr) 

J(r) = sinh(',/)[l - Cr cot(Cr)], H(r) = cosh(',/)[l - Cr cot(Cr)] (17) 

Unlike the solutions (9) and (13), this solution was briefly discussed by Hsu 
and Mac (1977) in their derivation of the BPS solution [i.e., Hsu and Mac 
start with a solution like that in (17) and apply the transformation C ---) iC 
to arrive at the BPS solution]. This solution is similar to that in (13), in 
that it replaces the hyperbolic functions of the original solution with their 
trigonometric counterparts. It should be noted that due to the linear Cr 
term in each solution, one can not obtain the solution (17) from the other 
trigonometric solution (13) by simply letting Cr ---) Cr - "rr/2. Although these 
two trigonometric solutions are in this sense distinct (i.e., they are not simply 
related by the transformation Cr ---) Cr - -rr/2), they are physically similar, 
since most of the comments concerning the solution (13) apply here as well. 
The singularities in the fields and energy density are now located on the 
spherical surfaces Cr = n~,  where n = 1, 2, 3, 4 . . . . .  The solution also 
has infinite total field energy, and infinite electric charge, unless ~/ = 0. As 
with all the other solutions, it possesses a magnetic charge of -4~r/g .  

Many of the physical characteristics of the solutions were substantially 
different in each case. However, the magnetic charge of all the solutions is 
the same. This comes about since the magnetic charge of each solution is a 
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topological charge which carries the same value for each field configuration. 
The topological current k~ is (Arafune et al., 1975) 

l ~o.veff3~.abcOVSaoaSbofS$c (18) 

The topological charge of this field configuration is then 

f I f  (~_ijk~.abcOiSa~jSbok$c) d3 X q =  kod 3 x = -~--~ 

= ~8~r f ~iJk~bcOi(~"oJ~bok~c) d3x (19) 

For all the solutions one finds that s ~ = ra[r, which is the same regardless 
of the ansatz function H(r). In all cases we find that the topological charge 
i s q =  1. 

2. DISCUSSION AND CONCLUSIONS 

In this paper we have presented two new exact solutions to the SU(2) 
Yang-Mills-Higgs system. In the solution given by (9) we replaced the 
hyperbolic functions of the BPS solution with their complements and let the 
ansatz functions K(r) and G(r) be imaginary, thus making the space compo- 
nents of the gauge fields complex. The magnetic and electric fields of this 
solution indicate that it is a dyon carrying a magnetic charge of -4~r/g and 
an electric charge of - 4 w  sinh(~/)/g. Although this solution looks similar to 
the BPS solution, physically it may be more correct to think of it as a dyonic 
version of the Wu-Yang monopole, which also has divergent field energy 
due to a singularity at r = 0. One mathematically interesting feature of this 
solution is that all its physically measurable quantities are real despite having 
complex gauge fields. 

The two other solutions presented here were obtained by replacing the 
hyperbolic functions with their trigonometric counterparts. Both of these 
solutions had completely real fields. The gauge and scalar fields developed 
singularities on an infinite series of concentric spherical shells. In addition, 
unless "y = 0, both solutions carry an infinite electric charge, which may be 
thought of as concentrated on the spherical shells. Although these solutions 
carry both magnetic and electric charge (unless ~ = 0), it is difficult to see 
how they could be viewed as particle-like, and the name dyon is probably 
inappropriate [even in the case of the complex solution (9), which has infinite 
field energy, the fact that it has localized charges and a localized divergent 
energy density makes a particle-like interpretation somewhat reasonable]. 



1864 Singleton 

The singular spherical surfaces of the trigonometric solutions are similar to 
the singular spherical surface of the Schwarzschild-like solution of Singleton 
(1995). The Schwarzschild-like solution, however, had only one singular 
spherical surface rather than an infinite series of concentric surfaces. The 
occurrence of these singular spherical surfaces in the trigonometric solutions 
as well as in the Schwarzschild-like solution of Singleton (1995) could be 
taken as an indication that such structures may be a common feature of 
classical solutions to the Yang-Mills-Higgs equations. At present it is not 
clear what interpretation can be given to these trigonometric solutions or 
what physical role, if any, they may play. One could argue that the singularities 
in the trigonometric solutions, and to a lesser extent the singularity in the 
solution (9), might indicate that they are not physically important. However, 
this is not necessarily the case, as can be seen by the example of the meron 
solution (De Alfaro et  al., 1976), which is singular, and yet is thought to 
play a role in some non-Abelian gauge theories (Callan et al., 1978). One 
might consider using the trigonometric solutions to solve the field equations 
in some finite region around the origin, and patching them together with one 
of the other solutions which are better behaved as r -~ oo. In one sense the 
trigonometric solutions, despite their singularities, are interesting since, along 
with the Schwarzschild-like solutions of Singleton (1995, 1996), they may 
indicate that having spherical surfaces on which the fields diverge may be 
a common feature of some non-Abelian gauge theory solutions. 
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